
AN197: Serial Communications Guide for
the CP210x

This application note applies to the following devices: CP2101,
CP2102, CP2102N, CP2103, CP2104, CP2105, and CP2108.
This document is intended for developers creating products based on the CP210x USB
to UART Bridge Controller. It provides information about serial communications and how
to obtain the port number for a specific CP210x device. Code samples are provided for
opening, closing, configuring, reading, and writing to a COM port in Windows 10 and lat-
er. It's required to include several Windows headers to make use of these APIs.

KEY POINTS

• Shows how to open a COM Port
• Discusses how to prepare an open COM

Port for data transmission
• Shows how to close the COM port
• Includes a sample program to demonstrate

serial functions
• Shows how to discover the CP210x COM

Port
• Includes application design notes
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1.  Opening a COM Port

Before configuring and using a COM port to send and receive data, it must first be opened. When a COM port is opened, a handle is
returned by the CreateFile() function that is used from then on for all communication. Here is example code that opens COM3:

HANDLE hMasterCOM = CreateFile("\\\\.\\COM3",
      GENERIC_READ | GENERIC_WRITE,
      0,
      0,
      OPEN_EXISTING,
      FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED,
      0);

The first parameter in the CreateFile() function is a string that contains the COM port number to use. This string will always be of the
form \\\\.\\COMX where 'X' is the COM port number to use. The second parameter contains flags describing access, which will be
GENERIC_READ and GENERIC_WRITE for the example in this document, and allows both read and write access. Parameters three and
four must always be 0, and the flag in parameter five must always be OPEN_EXISTING when using CreateFile() for COM applications.
The sixth parameter should always contain the FILE_ATTRIBUTE_NORMAL flag. In addition, the FILE_FLAG_OVERLAPPED is an optional
flag that is used when working with asynchronous transfers (this option is used for the example in this document). If overlapped mode is
used, functions that read and write to the COM port must specify an OVERLAPPED structure identifying the file pointer, which is demon-
strated in 2.1 Purging the COM Port and 2.2 Saving the COM Port's Original State (more information on overlapped I/O is located at
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686358(v=vs.85).aspx). The seventh, and last, parameter must always be
0.

If this function returns successfully, then a handle to the COM port will be assigned to the HANDLE variable. If the function fails, then
INVALID_HANDLE_VALUE will be returned. Upon return, check the handle and if it is valid, then prepare the COM port for data transmis-
sion.
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2.  Preparing an Open COM Port for Data Transmission

Once a handle is successfully assigned to a COM port, several steps must be taken to set it up. The COM port must first be purged and
its initial state should be retrieved. Then the COM port's new settings can be assigned and set up by a device control block (DCB)
structure (more information is provided on the DCB structure in 2.3 Setting up a DCB Structure to Set the New COM State and at
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363214(v=vs.85).aspx).

2.1  Purging the COM Port

First, the COM port should be purged to clear any existing data going to or from the COM port using the PurgeComm() function:

PurgeComm(hMasterCOM, PURGE_TXABORT | PURGE_RXABORT | PURGE_TXCLEAR | PURGE_RXCLEAR);

The first parameter in the PurgeComm() function is a handle to the open COM port that will be purged. The second parameter contains
flags that further describe what actions should be taken. All four flags, PURGE_TXABORT, PURGE_RXABORT, PURGE_TXCLEAR, and
PURGE_RXCLEAR should always be used. The first two flags terminate overlapped write and read operations, and the last two flags clear
the output and input buffers.

If this function returns successfully then a non-zero value is returned. If the function fails, then it returns 0. Upon return, check the return
value; if it is non-zero, continue to set up the COM port (more information on the PurgeComm() function is located at https://msdn.micro-
soft.com/en-us/library/windows/desktop/aa363428(v=vs.85).aspx).

2.2  Saving the COM Port's Original State

Since the COM port settings can be modified to meet different needs, it is good practice to obtain the COM port's current state and
store it so that when the COM port is closed, the COM port can be restored back to its original state. This can be done using the
GetCommState() function:

DCB dcbMasterInitState;
GetCommState(hMasterCOM, &dcbMasterInitState);

The first parameter in the GetCommState() function is a handle to the open COM port to obtain settings from. The second parameter is
an address to a DCB structure to store the COM port's settings. This DCB structure should also be used as the initial state when speci-
fying new settings for the COM port (see 2.3 Setting up a DCB Structure to Set the New COM State).

If this function returns successfully then a non-zero value is returned. If the function fails, then it returns 0. Upon return, check the return
value; if it is non-zero, continue to set up the COM port (more information on the GetCommState() function is located at https://
msdn.microsoft.com/en-us/library/windows/desktop/aa363260(v=vs.85).aspx).

2.3  Setting up a DCB Structure to Set the New COM State

All of a COM port's settings are stored in a DCB structure. In section 2.2 Saving the COM Port's Original State a DCB structure was
retrieved that contained the initial settings of the COM port by using the GetCommState() function. To change a COM port's settings, a
DCB structure must be created and filled out with the desired settings. Then the SetCommState() function can be used to activate
those settings:

DCB dcbMaster = dcbMasterInitState;

dcbMaster.BaudRate = 57600;
dcbMaster.Parity = NOPARITY;
dcbMaster.ByteSize = 8;
dcbMaster.StopBits = ONESTOPBIT;

SetCommState(hMasterCOM, &dcbMaster);

Sleep(60);

Here a new DCB structure dcbMaster has been initialized to dcbMasterInitState, which are the current settings of the COM port.
After it has been initialized to the current settings, new settings can be assigned.
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2.3.1  Baud Rate

The baud rate property is set to 57600 bps, but can be set to any of the baud rates supported by the CP210x. (See the current data
sheet for the list of supported baud rates for the CP210x.)

2.3.2  Parity

The parity is set to NOPARITY, however it can also be set to ODDPARITY, EVENPARITY, SPACEPARITY, and MARKPARITY if supported by the
CP210x. (See the current data sheet for the list of supported parities for the CP210x.)

2.3.3  Byte Size

The byte size is set to 8, so there are 8 data bits in every byte of data sent. This can also be set to 5, 6, or 7 if supported by the
CP210x. (see the data sheet for the list of supported byte sizes for the CP210x.)

2.3.4  Stop Bits

The stop bits are set to ONESTOPBIT, but could also be set to TWOSTOPBITS or ONE5STOPBITS (1.5). (See the current data sheet for the
list of supported stop bits for the CP210x.) All combinations of data and stop bits can be used except for the combination of 5 data bits
with 2 stop bits and the combination of 6, 7, or 8 data bits with 1.5 stop bits.

After each of these settings is set to the desired value, the SetCommState() function can be called to set up the COM port. The first
parameter in the SetCommState() function is a handle to the open COM port to change the settings on. The second parameter is an
address to a DCB structure containing the COM port's new settings (more information on serial settings using DCB structures is located
at https://msdn.microsoft.com/en-us/library/windows/desktop/aa363214(v=vs.85).aspx).

If this function returns successfully, a non-zero value is returned. If the function fails, it returns 0. Upon return, check the return value; if
it is non-zero, delay for 60 ms to allow time for the settings to change and then continue to set up the COM port. This delay is not
required; however, a conservative time of 60 ms is good practice to ensure that the settings are changed before any other operations
take place.
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3.  Transmitting Data Across the COM Port

Once the COM port is successfully opened and configured, data can be written or read.

3.1  Writing Data

There are several things that need to happen in a write, so it is a good idea to create a function for the writes to be called whenever a
write must occur. Here is an example of a write function:

bool WriteData(HANDLE handle, BYTE* data, DWORD length, DWORD* dwWritten)
{
   bool success = false;
   OVERLAPPED o = {0};

   o.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);

   if (!WriteFile(handle, (LPCVOID)data, length, dwWritten, &o))
   {
      if (GetLastError() == ERROR_IO_PENDING)
         if (WaitForSingleObject(o.hEvent, INFINITE) == WAIT_OBJECT_0)
            if (GetOverlappedResult(handle, &o, dwWritten, FALSE))
            success = true;
   } 
   else
      success = true;

   if (*dwWritten != length)
      success = false;

   CloseHandle(o.hEvent);

   return success;
}

The parameters passed in to this function are the handle to an open COM port, a pointer to an array of bytes that will be written, the
number if bytes that are in the array, and a pointer to a variable to store and return the number of bytes written.

Two local variables are declared at the beginning of the function: a bool named success that will store the success of the write (this is
initialized to false, and only set true when the write succeeds) and an overlapped object o which is passed to the WriteFile() function
and alerts if the transfer is complete or not (this is always initialized to {0} before the hEvent is assigned). Creating an event with the
CreateEvent (NULL, FALSE, FALSE, NULL) function sets the hEvent property of o to prepare it to be passed to the WriteFile()
function (more information on CreateEvent() is located at https://msdn.microsoft.com/en-us/library/windows/desktop/ms682396(v=vs.
85).aspx).

Next, the WriteFile() function is called with the handle, data, length of the data, and variable to store the amount of data that was
written (more information on WriteFile() is located at https://msdn.microsoft.com/en-us/library/windows/desktop/aa365747(v=vs.
85).aspx). If this function returns successfully, a non-zero value is returned. If the function fails, it returns 0. The if statement will deter-
mine if the write succeeded and if it did not, the last error is retrieved to see if there really was an error or the write just wasn't finished.
If ERROR_IO_PENDING is returned then object o is then waited on until either the write finishes or fails (if something other than
ERROR_IO_PENDING is returned by the GetLastError() function, then there is the possibility of surprise removal; see 6. Application De-
sign Notes for comments on surprise removal). When the wait is over, the result is obtained so that the amount of bytes written is upda-
ted. The success variable will then be assigned with the appropriate value, and the handle of o.hEvent is closed. Then the amount of
bytes written is checked, and finally the function returns the success of the write, which will be true if the write successfully completed.
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3.2  Reading Data

There are several things that need to happen in a read, so it is a good idea to create a function for the reads to be called whenever a
read must occur. Here is an example of a read function:

bool ReadData(HANDLE handle, BYTE* data, DWORD length, DWORD* dwRead, UINT timeout)
{
   bool success = false;
   OVERLAPPED o = {0};
  
   o.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);

   if (!ReadFile(handle, data, length, dwRead, &o))
   {
      if (GetLastError() == ERROR_IO_PENDING) 
         if (WaitForSingleObject(o.hEvent, timeout) == WAIT_OBJECT_0)
            success = true;
         GetOverlappedResult(handle, &o, dwRead, FALSE);
   }
   else
      success = true;

   CloseHandle(o.hEvent);

   return success;
}

The parameters passed in to this function are the handle to an open COM port, a pointer to an array of bytes that will be read, the
number if bytes that are in the array, a pointer to a variable to store and return the number of bytes read, and a timeout value.

Two local variables are declared at the beginning of the function: a bool named success that will store the success of the read (this is
initialized to false, and only set true when the read succeeds), and an overlapped object o which is passed to the ReadFile() function
and alerts if the transfer is complete or not (this is always initialized to {0} before the hEvent is assigned). Creating an event with the
CreateEvent(NULL, FALSE, FALSE, NULL) function sets the hEvent property of o to prepare it to be passed to the ReadFile() func-
tion (more information on CreateEvent() is located at https://msdn.microsoft.com/en-us/library/windows/desktop/ms682396(v=vs.
85).aspx).

Next, the ReadFile() function is called with the handle, data, length of the data, and variable to store the amount of data that was
written (more information on the ReadFile() function is located at https://msdn.microsoft.com/en-us/library/windows/desktop/
aa365467(v=vs.85).aspx). If this function returns successfully then a non-zero value is returned. If the function fails, then it will return 0.
The if statement will determine if the write succeeded and if it didn't, the last error is retrieved to see if there really was an error or the
write just wasn't finished. If ERROR_IO_PENDING is returned then object o is then waited on until either the write finishes or fails (if some-
thing other than ERROR_IO_PENDING is returned by the GetLastError() function, then there is the possibility of surprise removal; see
6. Application Design Notes for comments on surprise removal). When the wait is over, the result is obtained so that the amount of
bytes read is updated. The success variable will then be assigned with the appropriate value, and the handle of o.hEvent is closed.
Finally, the function returns the success of the read, which will be true if the read successfully completed.
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4.  Closing the COM Port

After all communication is finished, then the COM port should then be closed. First, the COM port should be set back to its initial state,
and then the handle to the COM port should be closed and set to an invalid handle. Example code is shown below:

SetCommState(hMasterCOM, &dcbMasterInitState);

Sleep(60);

CloseHandle(hMasterCOM);
hMasterCOM = INVALID_HANDLE_VALUE;

The SetCommState() function works the same as described in 2.3 Setting up a DCB Structure to Set the New COM State. A delay of
60 ms is used to make sure the settings have time to be set. Finally the device is closed using the CloseHandle() function. This func-
tion just takes in the handle of the COM port. After this function is called, it is important to set the variable to an
INVALID_HANDLE_VALUE.
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5.  Sample Program to Demonstrate Serial Communications

The USBXpressSDK for Windows includes an example named CP210xSerialTest which contains the source code and executable for
a Visual Studio project that makes use of all the serial communication functions described in section 2. Preparing an Open COM Port
for Data Transmission, section 3. Transmitting Data Across the COM Port, and section 4. Closing the COM Port. The program is a
basic dialog based application that accepts two COM port numbers, and then will send a test array of 64 bytes of data back and forth
between them. After the SDK is installed, the example should be located at CP210x\Examples\CP210xSerialTest.
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6.  Application Design Notes

The functions used in 2. Preparing an Open COM Port for Data Transmission, 3. Transmitting Data Across the COM Port, and 4. Clos-
ing the COM Port are Windows COMM API functions. The examples provided are just samples of the recommended way of dealing
with serial communication. For more specific information on these functions, see the MSDN website at: https://msdn.microsoft.com/en-
us/library/ff802693.aspx.

It should also be noted that the SetCommState() function does not save the settings between opening and closing the COM port. As
stated before, it is good practice to get the current settings after the COM port is opened, and then restore them before it is closed.

All of the functions here will return an error code. It is a good idea to nest these functions in order to catch errors if they occur by using
the GetLastError() function. This will also solve any surprise removal problems by allowing the discovery of an invalid handle to be
found and dealt with. The example application (CP210xSerialTest) has several cases that will detect surprise removal. In this example,
there are checks on every function to make sure that the return code is true. If it is not, then it will display where the error occurred in
the output window. As long as correct and supported settings are passed to the functions they should execute normally. Most failures
can occur from having an INVALID_HANDLE_VALUE, however, the handles must be set to this value after a surprise removal occurs.

Because regular COM ports will always be visible, then data can always be written to them successfully, even if there is no way to read
it. However, because the CP210x is a virtual COM port, if the device is removed, then the handle that it uses becomes invalid when
trying to write to it. If for some reason the CP210x device is unplugged the write will fail and ERROR_OPERATION_ABORTED will be re-
turned by GetLastError(). When this happens, the handle needs to be closed and then set to INVALID_HANDLE_VALUE. Alternatively,
a regular COM port can always be read from, but if there is no data then it will time out. When using the CP210x as the virtual COM
port and it is removed before a read occurs, then the read will fail and ERROR_ACCESS_DENIED will be returned by GetLastError().
Again when this happens, the handle needs to be closed and then set to INVALID_HANDLE_VALUE.
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7.  References

MSDN - use this to search for specific Windows API functions

http://msdn.microsoft.com/

Serial Communication Reference

https://msdn.microsoft.com/en-us/library/ff802693.aspx

Communication Resource Reference

https://msdn.microsoft.com/en-us/library/windows/desktop/aa363196(v=vs.85).aspx
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8.  Document Change List

Revision 1.1

February, 2023
• Removed GetPortNum description in the introduction.
• Updated the information of CP210xSerialTest example in Section 5. Sample Program to Demonstrate Serial Communications
• Changed Delay() to Sleep() in Section 2.3 and Section 4.

Revision 1.0

February, 2017
• Updated format to current style guide.
• Updated all references from AN144 to AN721, which replaces AN144.
• Updated links to MSDN articles.
• Removed section 6 on finding the COM port, since the example is now outdated.

Revision 0.9

October, 2012
• Added CP2108 to Relevant Devices list.

Revision 0.8

October, 2010
• Added CP2104/5 to Relevant Devices.
• Updated GetPortNum function and added support for Windows 7 in Section 7.
• Removed support for Windows 98.

Revision 0.7

August, 2008
• Corrected registry paths in .

Revision 0.6

October, 2007
• Updated XP/2000 references to include Server 2003/Vista.
• Updated WinXP/2000 key listing in section .
• Updated code in section .

Revision 0.5

February, 2005
• Added CP2103 to Relevant Devices on page 1.

Revision 0.4

December, 2004
• Updated .

Revision 0.3

October, 2004
• Initial release.

AN197: Serial Communications Guide for the CP210x
Document Change List

silabs.com | Building a more connected world. Rev. 1.1  |  11



Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

www.silabs.com

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Simplicity Studio
One-click access to MCU and wireless 
tools, documentation, software, 
source code libraries & more. Available 
for Windows, Mac and Linux!

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each 
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon 
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the 
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or 
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or 
authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent 
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in 
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used 
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims 
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.  
Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more 
information, visit  www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy 
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect , n-Link, ThreadArch®, EZLink®, EZRadio®, EZRadioPRO®, 
Gecko®, Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others 
are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered 
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.


	1. Opening a COM Port
	2. Preparing an Open COM Port for Data Transmission
	2.1 Purging the COM Port
	2.2 Saving the COM Port's Original State
	2.3 Setting up a DCB Structure to Set the New COM State
	2.3.1 Baud Rate
	2.3.2 Parity
	2.3.3 Byte Size
	2.3.4 Stop Bits


	3. Transmitting Data Across the COM Port
	3.1 Writing Data
	3.2 Reading Data

	4. Closing the COM Port
	5. Sample Program to Demonstrate Serial Communications
	6. Application Design Notes
	7. References
	8. Document Change List

